Language use or discourse are often tricky processes to decipher. Saying even a simple expression in a different tone or in a different place and time changes the understanding of this expression. Some logical processes, such as context and coherence, can help make sense of this situation, but how do you do this in a long, voluminous text? This is where text analysis comes into play.
Text analysis (content or textual analysis) is a research method usually supported by artificial intelligence software that finds meanings, patterns, and relationships in any text.
It enables the smooth and systematic classification of incredibly dense and unstructured text data into well-structured ones. It can examine historical or real-time data with qualitative and quantitative techniques and provide definitive evidence for the purpose of the research.
In order to carry out your research for more accurate purposes, you may need to choose the appropriate text analysis models and techniques. For example, examining survey answers and examining the transcript of a conversation will not serve the same purposes.
Text analysis techniques
Likewise, an analysis made by businesses to understand their customers is not the same as a linguistic description made for a thesis. You can also use similar analysis methods like content analysis and thematic analysis to identify text data. Here are text analysis examples for each type listed below, from which you can choose the one that suits you:
This technique is used to analyze a text according to pre-defined categories. For example, you create categories such as proper names, time, and place, and the program you use classifies the expressions that fit these patterns for you.
Example: “It has been 1 year, but this application still does not work in cities other than London.”
Analysis: 1 year(time), cities other than London(location)
This technique is used to identify and extract the emotions of people from any qualitative data. It is generally utilized by businesses to enhance customer satisfaction. There are also ways to do this, such as using a mood scale(1 to 10) or identifying only the dominant emotion.
Example: “I have seen many different TV brands, but this one really made me satisfied while watching it.”
Analysis: Highly positive, satisfaction feeling
It is a technique that tries to reveal how natural language is used in a text, whether there are grammatical errors, and which functions of the language are used. It is a good method to better understand the relationships and patterns between sentences and to find contextual foundations.
Example: “When you look at the latest movies, they are all good movies.”
Syntactic analysis: The subject is “they,” the verb is “are,” the object is “all good movies,” and the subordinate clause is “when you look at the latest movies.”
Semantic analysis: The sentence expresses a general observation or assertion about the quality of "the latest movies."
Quantitative analysis is a technique used to examine the patterns of phrases and expressions in a text according to their frequency or to examine numerical data. For this purpose, it is especially appropriate to examine objective data.
Example: You conducted a survey of user comments about a newly released product.
Analysis: When you listed the words that appeared most frequently in the survey responses, you discovered that the words "useful," "affordable," and "good" were the most frequently mentioned.
First of all, text analysis is a research method, but text mining is a data extraction process. Therefore, it is useful to know that they do not mean the same thing. Text analysis is generally used to find patterns and valuable insights from any text.
This can be used to prove a theory or establish a theory, and the course of the analysis can be shaped accordingly. But text mining is a data mining process. The purpose is only to reveal the data that is not visible, cluster it, classify it, and perform similar operations.
In the business world, where any kind of data analysis is worth its weight, it is of great importance to understand what people think and express. You can ensure with a proper analysis that both employees, customers, and the business in general are in a better position. You can use text analysis for this, and why you should use it is listed below:
The benefits textual data has for businesses are mentioned before. However, it is important to remember that it can be used in all kinds of research activities, not just for businesses. Because text analysis is a guide that will help you when you are lost, it clarifies many questions thanks to the data it reveals. To broaden the benefits examples:
Reasons to use the text analysis
There are many different text analysis software and tools that researchers can use depending on their needs and competence. Here just the popular ones are listed below:
Tools for text analysis
In this FAQ section, you can easily access the parts about text analysis that you and other readers are curious about.
Por ejemplo, el análisis de textos es una herramienta fundamental para la publicidad. Analizar los comentarios en las redes sociales, el historial de búsquedas y textos similares basados en cookies en cualquier entorno digital es de gran importancia para continuar con las actividades publicitarias.
Si quieres saber cómo escribir un texto de análisis, primero debes comprender los elementos principales del texto de investigación, como los temas y los patrones. Esto es posible tanto con un análisis adecuado como con la evaluación de un investigador cualificado.
A continuación, se exponen opiniones y valoraciones relacionadas con el tema mediante pruebas y ejemplos extraídos del texto. Por último, se presenta una visión consultiva exponiendo el objetivo principal y el resumen del análisis.
En el análisis de tipos de texto se determina a qué género pertenece un texto y qué patrones lingüísticos presenta. Esto permite a los investigadores comprender las estructuras con las que surgen los distintos tipos de texto y cómo se utilizan en la comunicación.
Sí, el análisis de textos es un método de investigación que permite analizar cualquier lenguaje oral escrito o transcrito para obtener información útil. Sin embargo, no hay una única forma de hacerlo, sino que implica muchos otros tipos de investigación.
El análisis de textos es un método de investigación que permite utilizar no sólo datos cualitativos, sino también cuantitativos. Dependiendo de la finalidad de las preguntas de investigación, el enfoque puede ser cualitativo o cuantitativo, o es posible utilizar ambos consecutivamente.
En lingüística, el análisis de textos se utiliza para comprender la función de una lengua, el discurso y la comunicación. El texto se examina en distintas dimensiones según las sub-ramas de la lingüística. Mientras que las características de los sonidos son importantes en el análisis fonológico del texto, las reglas de construcción de las palabras se investigan en un análisis morfológico.
Además, se lleva a cabo un análisis sintáctico en la dimensión oracional, un análisis semántico en la dimensión del significado, un análisis pragmático en el uso de la lengua y un análisis del discurso en la dimensión del discurso a gran escala.
Tanto el análisis de texto como el análisis de sentimientos se utilizan en el procesamiento del lenguaje natural (PLN). El análisis de sentimientos es una subcategoría del análisis de texto. Se utiliza especialmente para evaluar y puntuar el estado emocional predominante en un texto.
Las empresas y organizaciones suelen utilizarlo para comprender mejor los sentimientos y pensamientos de los clientes y el público. Sin embargo, el análisis de texto se utiliza generalmente para revelar conceptos, expresiones y estructuras en un texto, y su enfoque es más amplio que el examen de las emociones.
El análisis de textos y el análisis de documentos son dos métodos diferentes que están relacionados entre sí pero tienen finalidades distintas. La principal diferencia entre el análisis de documentos y el análisis de textos es que el primero se utiliza para examinar la estructura de textos a gran escala, mientras que el segundo se utiliza para examinar un texto individual.
El tamaño de este texto individual también puede ser bastante grande, pero el análisis de texto intenta comprender la esencia de los patrones y expresiones de este texto. Por otro lado, el análisis de documentos se utiliza para clasificar y resumir el documento examinando estructuralmente todos los elementos dentro y fuera del texto.
In conclusion, the purpose of this article is to introduce you to text analysis and make you a competent individual in this type of analysis. Therefore, first of all, the introduction was made with the definition of text analysis. Then, the techniques you could use were explained. Since it is often confused with text mining, its differences were mentioned.
The benefits for businesses and anyone wanting to do general research are listed. Finally, the article ended by mentioning the software tools with which you can analyze text. After that, all you have to do is start creating a custom text analysis.
Atakan is a content writer at forms.app. He likes to research various fields like history, sociology, and psychology. He knows English and Korean. His expertise lies in data analysis, data types, and methods.