Bis zu 65 % Rabatt auf alle Jahrespläne! 🎁 Holen Sie sich ein beliebiges Jahresabonnement mit bis zu 65% Rabatt! ❄️ 🏷️
You did some research, but there are some problems. The results were not as you expected. However, you thought you were doing everything properly. So what exactly is the reason for this? Could you have made a sampling error?
If you ask what sampling error is, do not rush because it will be explained extensively in the rest of the article, but know this much: sampling error is something that every person is familiar with in the world of analysis, and you, unfortunately, have to deal with it.
A sampling error is a research problem that arises when a population studied does not actually reflect the entire population.
The main reason for this standard error is that the population sample is not compatible with the true population in terms of diversity and number. Although researchers include a margin of error in their research, sampling error is always an issue they must deal with.
Businesses often resort to analysis to get to a better position. However, when these analyses are not done carefully, they may cause some inaccuracies, such as sampling errors. The most frequently observed types of sampling errors are listed below:
Sampling error types in market research
An example of a sampling error will be given here. However, first of all, you should know how to calculate sampling error. You can generally use analysis programs and artificial intelligence as a sample error calculator, but it may still be useful to know the sampling error formula.
Sampling error = Z x STD/Sqrt (N)
Z- is the z-score corresponding to the desired confidence level (1.96 for a 95% confidence level).
STD- is the population standard deviation.
N- is the sample size.
For example, market research aims to reach the number of people using hats in summer. For this, a firm conducts a survey to estimate the proportion of people who wear hats during the summer season in a small town. They selected a random sample of 400 individuals and found that 120 of them reported wearing hats regularly during the summer. Researchers used the above formula to find the margin of error.
The margin of error for the estimated proportion of people who wear hats during the summer season is approximately 0.0448. This means that with a 95% confidence level, the true proportion of hat-wearers in the population is likely to fall within 4.48 percentage points of the observed proportion (30%) obtained from the sample.
Sampling errors are not the only statistical errors found in research; there are also non-sampling errors. Both of these negatively affect the outcome of the research. So, what exactly are the differences between these two?
In order for research to yield precise and reliable results, the margin of error must be quite low. This margin of error is generally considered acceptable between 5% and 3%. So, when you repeat a survey, the result must be more or less the same. Otherwise, there will be a sampling error, etc. There may be an error. So, how should you take precautions against this error?
How to reduce the sampling error
In this section, you can easily find what you are curious about and want to learn more about sampling error.
In der Biologie liegt ein Stichprobenfehler vor, wenn Proben von lebenden Organismen, Geweben oder Zellen nicht mit den Merkmalen der allgemeinen Bevölkerung übereinstimmen. Diese Unstimmigkeit wird durch eine falsche oder unvollständige Auswahl der Proben verursacht. Die Verringerung des Stichprobenfehlers ist ein Muss, damit biologische statistische Analysen erfolgreicher sind.
Ein Fehler ist, wie der Name schon sagt, eine unerwünschte Situation. Er wirkt sich negativ auf die Qualität jeder Forschung aus. Zunächst einmal führt er dazu, dass Vorhersagen und Berechnungen ungenau und unvollständig sind. Dadurch verringert er die Genauigkeit der Ergebnisse. Er führt zu Zeit- und Geldverlust, da die Forschung erneut abgetastet und bearbeitet werden muss.
Die Vermeidung von Stichprobenfehlern ist eigentlich recht einfach. Sie brauchen dafür kein umfangreiches Wissen, Sie müssen nur Folgendes beachten.
Halten Sie den Umfang der Stichprobe stets groß
Vermeiden Sie homogene Gruppen und wenden Sie kontrollierte Zufallsstichproben an.
Legen Sie Ihren Forschungsschwerpunkt und den Stichprobenrahmen gut fest
Führen Sie Pilotstudien durch
Holen Sie sich die Hilfe von Statistikexperten
Stellen Sie sicher, dass die Untersuchung jederzeit valide ist.
Stichprobenfehler sind im Großen und Ganzen das Ergebnis einer oberflächlichen Forschung und eines unerfahrenen Forschers. Um diese Gründe näher zu erläutern: Der Verlauf der Untersuchung wird dem Zufall überlassen, die Zielgruppen werden nicht geclustert oder die Stichprobengröße wird klein gehalten, die Untersuchung wird ohne jegliche Methodik und Aufzeichnung fortgesetzt, Analysetechniken werden nicht ordnungsgemäß angewandt, und es werden falsche Daten erhoben.
As a result, sampling errors are misleading data collection and analysis errors for the target population. You need to avoid this so that your research can provide accurate results.
This article explains the definition and types of sampling errors with examples. It also shows the formula calculation you can use for sampling error. Its difference from non-sampling error and how you can minimize sampling error are explained. Thus, you now have more information about sampling error.
Sena is a content writer at forms.app. She likes to read and write articles on different topics. Sena also likes to learn about different cultures and travel. She likes to study and learn different languages. Her specialty is linguistics, surveys, survey questions, and sampling methods.