Yıllık planlar, yalnızca sınırlı bir süre için %65'e varan Black Friday indiriminde. ⏰
Has your business's profit rate decreased? Did your newly opened shop bring in more income this season? Have your customers expressed their dissatisfaction lately? You can collect historical data and apply descriptive analysis to find out the reasons. It will help you to identify key factors about the event. It will show your good or weak sides.
In this article, you will see how you can benefit from descriptive analysis. It is not a complicated research method. So you shouldn't need to worry about it. But first, you need to know its definition, so start from the heading below.
Descriptive analysis is a data analysis technique using historical data to describe and demonstrate a condition.
It reveals the patterns and relationships of data points in the simplest way. That's why it gives the quickest response to find out why an event happened. On the other hand, because of this simplicity, researchers sometimes need to make manual inputs. However, they can achieve productive results when they work systematically.
Descriptive statistical analysis is often called the most basic analysis for summarizing data. That's why it's frequently used as a stepping stone to other types of comprehensive analysis, such as diagnostic analysis, predictive analysis, and prescriptive analysis.
There are three types of descriptive analysis tools that you can utilize. Although these are generally associated with univariate analysis methods, you can also use them with statistics methods such as bivariate, multivariate, and time series.
Since a lot of calculations are required, it is used with many calculation programs.
For example, descriptive analysis in Excel allows users to calculate summary statistics of their dataset. Below, you can check each of the types with descriptive analysis examples to get a better understanding of the topic:
Types of descriptive analysis
It can be the most basic summary of the dataset. It is used to show how often each value occurs in a dataset. However, you should remember that it is slightly different than the mode. It will be explained with an example.
Example: There are four different phone brands in the market. These are A, B, C and D brands. The daily sales amount of brand A phones is 3, B phones is 4, C phones is 5 and D phones is 6. These are, respectively, the frequency distribution. On the other hand, there is no mode in this dataset because there is no frequent number. With this simple process, you can identify patterns and then make informed decisions.
It is used to find the average of a dataset. It also serves as a body for using other measures. There are three common measures you can use: mean, median, and mode.
Example: Assume that you collected data about your customers’ ages. The average of their ages will show you the mean. For example, it is 32. Now, you analyze the mode and find its value to be 30. Now, you can use this data. You may take action to increase the satisfaction of your customers in their 30s by focusing on them, or you can consider this analysis as a start if you want to reach wider age ranges.
It finds the dispersion of data points by describing how far they are from the distribution point and each other. There are four common measures you can use: range, interquartile range, standard deviation, and variance.
Example: You are considering providing standard deviation to measure and prove your data quality. The data you have contains the product prices that customers prefer most. These are worth $20, $25, $30, $35, and $40, respectively. When you average it, it becomes 30. When you look at how much the other values deviate from the mean value, you find that the variance is 62.5, and the standard deviation is 7.9.
Do you have more questions about descriptive analysis? Do you want to make yourself proficient in this type of analysis? You can check out the most common inquiries around it below.
Açıklayıcı analizi çeşitli senaryolarda kullanabilirsiniz. Örneğin, insanların sizi web'de nerede bulduğunu öğrenmek için şirketinizin web sitesi trafiğini analiz edebilirsiniz. Mağazanızdaki satın alma geçmişlerini inceleyerek ürün trendlerini anlayabilirsiniz. Böylece müşteri memnuniyeti için talebe göre hareket edebilirsiniz.
Her ikisi de açıklayıcı analiz yapmak için uygun tekniklerdir. Ancak bazı veri bilimciler nicel betimsel analizi daha somut ve bilimsel bulabilir. Bununla birlikte, nitel analizin büyük şirketler tarafından bile benimsenmiş olması bu türün de geçerli olduğunu göstermektedir.
Öncelikle sıklık ölçümleri. Amaç, bir olayın sıklığını genel olarak sayısal ifadelerle ifade etmektir. İkinci olarak, merkezi eğilim ölçüleri. Amaç, ortalama, medyan ve modu hesaplayarak genel eğilimi bulmaktır. Üçüncü olarak, dağılım ölçüleri. Aralık veya standart sapma kullanarak verilerin dağılımını ölçmeyi amaçlar. Ve son olarak, konum ölçüleri. Bir değerin diğer değerlerle ve çevresiyle olan ilişkisini ölçmeyi amaçlar.
Açıklayıcı analiz, verilerin mevcut olduğu tüm alanlarda uygulanabilir. Örneğin, işletmeler müşterileri hakkında bilgi edinmek ve ürün geliştirme ve pazarlama stratejilerini oluşturmak için kullanabilir. Eğitimde öğrenciler, sınavlar ve derslerle ilgili stratejiler ve gelişmeler için kullanılabilir. Finans alanında, hisse senetleri, enflasyon, şirket kazançları gibi konularda bilgi edinmek için kullanılabilir.
Açıklayıcı analiz, veri analizinin en basit ve en temel türüdür. Bunun nedeni, herhangi bir ekleme veya yorumlama yapmadan olanı olduğu gibi aktarmasıdır. Dolayısıyla, ne olduğuna dair hızlı bir teşhise ihtiyacınız varsa açıklayıcı analiz her zaman yanınızda olacaktır. İnsan girdisi, analizin ortaya koyduklarından daha önemlidir. Bu nedenle, açıklayıcı analiz genellikle kapsamlı olmayan veri analitiği için kullanılır.
Descriptive analysis is the fundamental analysis method for business data analysts. It is essential to use it in order to understand what the data is and to make evaluations accordingly. It is waiting to be used to unearth fundamental phenomena and assist businesses in historical data research.
In this article, descriptive analysis is explained, as well as its various types. Other important points are also mentioned in the FAQ section. After this, you can now use descriptive analysis to understand the data. You're ready to utilize historical data to make insightful decisions.
Atakan is a content writer at forms.app. He likes to research various fields like history, sociology, and psychology. He knows English and Korean. His expertise lies in data analysis, data types, and methods.