Bis zu 65 % Rabatt auf alle Jahrespläne! 🎁 Holen Sie sich ein beliebiges Jahresabonnement mit bis zu 65% Rabatt! ❄️ 🏷️
Has your business's profit rate decreased? Did your newly opened shop bring in more income this season? Have your customers expressed their dissatisfaction lately? You can collect historical data and apply descriptive analysis to find out the reasons. It will help you to identify key factors about the event. It will show your good or weak sides.
In this article, you will see how you can benefit from descriptive analysis. It is not a complicated research method. So you shouldn't need to worry about it. But first, you need to know its definition, so start from the heading below.
Descriptive analysis is a data analysis technique using historical data to describe and demonstrate a condition.
It reveals the patterns and relationships of data points in the simplest way. That's why it gives the quickest response to find out why an event happened. On the other hand, because of this simplicity, researchers sometimes need to make manual inputs. However, they can achieve productive results when they work systematically.
Descriptive statistical analysis is often called the most basic analysis for summarizing data. That's why it's frequently used as a stepping stone to other types of comprehensive analysis, such as diagnostic analysis, predictive analysis, and prescriptive analysis.
There are three types of descriptive analysis tools that you can utilize. Although these are generally associated with univariate analysis methods, you can also use them with statistics methods such as bivariate, multivariate, and time series.
Since a lot of calculations are required, it is used with many calculation programs.
For example, descriptive analysis in Excel allows users to calculate summary statistics of their dataset. Below, you can check each of the types with descriptive analysis examples to get a better understanding of the topic:
Types of descriptive analysis
It can be the most basic summary of the dataset. It is used to show how often each value occurs in a dataset. However, you should remember that it is slightly different than the mode. It will be explained with an example.
Example: There are four different phone brands in the market. These are A, B, C and D brands. The daily sales amount of brand A phones is 3, B phones is 4, C phones is 5 and D phones is 6. These are, respectively, the frequency distribution. On the other hand, there is no mode in this dataset because there is no frequent number. With this simple process, you can identify patterns and then make informed decisions.
It is used to find the average of a dataset. It also serves as a body for using other measures. There are three common measures you can use: mean, median, and mode.
Example: Assume that you collected data about your customers’ ages. The average of their ages will show you the mean. For example, it is 32. Now, you analyze the mode and find its value to be 30. Now, you can use this data. You may take action to increase the satisfaction of your customers in their 30s by focusing on them, or you can consider this analysis as a start if you want to reach wider age ranges.
It finds the dispersion of data points by describing how far they are from the distribution point and each other. There are four common measures you can use: range, interquartile range, standard deviation, and variance.
Example: You are considering providing standard deviation to measure and prove your data quality. The data you have contains the product prices that customers prefer most. These are worth $20, $25, $30, $35, and $40, respectively. When you average it, it becomes 30. When you look at how much the other values deviate from the mean value, you find that the variance is 62.5, and the standard deviation is 7.9.
Do you have more questions about descriptive analysis? Do you want to make yourself proficient in this type of analysis? You can check out the most common inquiries around it below.
Sie können die deskriptive Analyse in verschiedenen Szenarien einsetzen. So können Sie beispielsweise die Besucherzahlen auf der Website Ihres Unternehmens analysieren, um herauszufinden, wo die Besucher Sie im Internet finden. Sie können Produkttrends verstehen, indem Sie die Kaufhistorie in Ihrem Geschäft untersuchen. So können Sie je nach Bedarf Maßnahmen zur Kundenzufriedenheit ergreifen.
Beides sind geeignete Techniken zur Durchführung einer deskriptiven Analyse. Manche Datenwissenschaftler halten jedoch die quantitative deskriptive Analyse für konkreter und wissenschaftlicher. Die Tatsache, dass die qualitative Analyse sogar von großen Unternehmen angewandt wird, zeigt jedoch, dass auch diese Art der Analyse unerlässlich ist.
Erstens: Häufigkeitsmessungen. Das Ziel ist es, die Häufigkeit eines Ereignisses im Allgemeinen in numerischen Ausdrücken auszudrücken. Zweitens, die Maße der zentralen Tendenz. Ziel ist es, die allgemeine Tendenz durch die Berechnung von Mittelwert, Median und Modus zu ermitteln. Drittens: Streuungsmaße. Sie zielen darauf ab, die Verteilung der Daten zu messen, indem sie den Bereich oder die Standardabweichung verwenden. Und schließlich die Lagemaße. Hier geht es darum, die Beziehung eines Wertes zu anderen Werten und seiner Umgebung zu messen.
Die deskriptive Analyse ist in allen Bereichen anwendbar, in denen Daten verfügbar sind. Unternehmen können sie zum Beispiel nutzen, um Informationen über ihre Kunden zu erhalten und ihre Produktentwicklung und Marketingstrategien zu verbessern. Im Bildungswesen kann sie für Strategien und Entwicklungen in Bezug auf Schüler, Prüfungen und Kurse verwendet werden. Im Finanzwesen können Informationen über Aktien, Inflation, Unternehmensgewinne usw. abgerufen werden.
Die deskriptive Analyse ist die einfachste und grundlegendste Art der Datenanalyse. Der Grund dafür ist, dass sie das, was ist, so wiedergibt, wie es ist, ohne irgendwelche Zusätze oder Interpretationen hinzuzufügen. Wenn Sie also eine schnelle Diagnose des Geschehens benötigen, steht Ihnen die deskriptive Analyse immer zur Verfügung. Der menschliche Beitrag ist wichtiger als das, was die Analyse offenbart. Daher wird die deskriptive Analyse häufig für nicht umfassende Datenanalysen verwendet.
Descriptive analysis is the fundamental analysis method for business data analysts. It is essential to use it in order to understand what the data is and to make evaluations accordingly. It is waiting to be used to unearth fundamental phenomena and assist businesses in historical data research.
In this article, descriptive analysis is explained, as well as its various types. Other important points are also mentioned in the FAQ section. After this, you can now use descriptive analysis to understand the data. You're ready to utilize historical data to make insightful decisions.
Atakan is a content writer at forms.app. He likes to research various fields like history, sociology, and psychology. He knows English and Korean. His expertise lies in data analysis, data types, and methods.